镍元素在蚀刻不锈钢中的主要作用在于它改变了钢的晶体结构。在蚀刻不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是独一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于猜测不锈钢的晶体结构具有重要意义。目前,人们已经研究出良多公式来表述奥氏体形成元素的相对重要性,闻名的是下面的公式:
奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu%
从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐侵蚀的不锈钢中,由于在焊接后它会造成敏化侵蚀和随后的晶间侵蚀题目。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的题目,只能在不锈钢中添加数目有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的题目。
从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮恰是一种非常强的奥氏体形成元素。在200系列的不锈钢中,恰是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数目就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相称于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合尺度的200系列不锈钢中,因为不能加入足足数目的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这导致了不锈钢抗侵蚀能力的下降。
在蚀刻不锈钢中,有两种相反的气力同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。晶体结构取决于两类添加元素的相对数目。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。由于铁和铬都是铁素体形成元素,所以400系列不锈钢是铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,跟着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。假如仅添加一半数目的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。
400系列蚀刻不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢比拟,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。
300系列蚀刻不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性蚀刻不锈钢材料,比400系列不锈钢具有好的可锻特性。因为300系列蚀刻不锈钢的奥氏体结构,因此它在很多环境中具有很强的抗侵蚀机能,具有很好的抗金属超应力引起的侵蚀所造成的断裂的机能,而且其材料特性不受热处理的影响。
下一篇:不锈钢蚀刻过程中常见问题及解决方法简介上一篇:蚀刻行业协会——PCMI
相关资讯
- 2019-11-125G手机散热解决方案蚀刻VC散热
- 2019-10-18南通卓力达消防演习 南通市通州区消防大队现场指导
- 2019-10-08卓力达庆祝中华人民共和国成立70周年,祝伟大祖国繁荣昌盛!
- 2019-10-08卷对卷蚀刻加工 0513-81601666
- 2019-09-24金属蚀刻网在我们生活中的应用
- 2019-09-17工艺设计的可操作性要求
- 2019-09-09金属蚀刻原理
- 2019-09-09解读不锈钢蚀刻、铜蚀刻、铝蚀刻的区别
- 2019-09-03金属蚀刻液再生
- 2019-08-31蚀刻工艺流程